2015年高考数学二轮复习备考指导
- 来源:学习导刊 smarty:if $article.tag?>
- 关键字:高中数学,复习,高效 smarty:/if?>
- 发布时间:2014-12-04 13:13
【摘要】高考数学第二轮复习至关重要,我们要在知识体系建构的基础上,强调知识的内在联系。注重学习方法,做好“四个看和四个度”,将知识融会贯通,才能将复习落到实处。
【关键词】高中数学;复习;高效
第一轮复习的目的是将我们学过的基础知识梳理和归纳,在这个过程当中主要以两个方面作为参考。第一个是以教材为基本内容,第二个以教学大纲以及当年的考试说明,作为我们参考的依据,然后做到尽量不遗漏知识,因为这也是作为我们二轮三轮复习的基础。第二轮的复习,是在第一轮复习的基础上,对高考知识点进行巩固和强化,是考生数学能力和学习成绩大幅度提高的关键阶段,复习指导思想是:巩固、完善、综合、提高。巩固,即巩固第一轮单元复习的成果,把巩固三基(基础知识、基本方法、基本技能)放在首位,强化知识的系统与记忆;完善,就是通过此轮复习,查漏补缺,进一步建立数学思想、知识规律、方法运用等体系并不断总结完善;综合,就是在课堂做题与课外训练上,减少单一知识点的试题,增强知识点之间的衔接,增强试题的综合性和灵活性;提高,就是进一步培养和提高对数学问题的阅读与概括能力、分析问题和解决问题的能力。因此,高三数学第二轮的复习,对于课堂听讲并适当作笔记,课外训练、自主领悟并总结等都有较高要求,“二轮看水平”是最“实际”的一个阶段。要求学生做到“四个看与四个度”:一看对近几年高考常考题型的作答是否熟练,是否准确把握了考试要求的“度”——《考试说明》中“了解、理解、掌握”三个递进的层次,明确“考什么”、“怎么考”;二看在课堂上是否紧跟老师的思维并适当作笔记,把握好听、记、练的“度”;三看知识的串连、练习的针对性是否强,能否使模糊的知识清晰起来,缺漏的板块填补起来,杂乱的方法梳理起来,孤立的知识联系起来,形成系统化、条理化的知识框架,控制好试题难易的“度”;四看练习或检测与高考是否对路,哪些内容应稍微拔高,哪些内容只需不降低,主次适宜,重在基础知识的灵活运用和常用数学思想方法的掌握,注重适时反馈的“度”。在高考一轮复习即将结束、二轮复习即将开始这样一个承上启下的阶段,时间紧,任务重。
构建知识网络,高考试题的设计,重视数学知识的综合和知识的内在联系,尤其重视在知识网络的交会点设计试题。而一轮复习结束后,知识点在我们的意识形态中还是孤立的,二轮复习的过程,是对数学基础知识和基本方法不断深化的过程,要从本质上认识和理解数学知识之间的联系,从而加以分类、归纳、综合,形成一个条理化、排列有序、知识之间关系清晰的知识结构系统。这样在解题时,就可根据题目提供的信息,提取相关的知识点,进行有机组合,探索解题的思路和方法。如函数、导数、方程和不等式以及数列在解决问题时经常相互转化;再如解析几何中曲线与方程和代数中的函数与图像之间的联系;解析几何与向量,解析几何与导数等。因此,只有搞清楚知识之间的内在联系,形成知识结构和网络,在解题时才能从不同角度去分析解决,才能对知识融会贯通,运用自如。
1、主干知识八大块
(1)函数与导数(及其应用);(2)不等式及线性规划;(3)数列(及其应用);(4)三角函数(图象、性质及变换);(5)直线与平面及简单几何体(空间角、距离、平行与垂直关系的证明、几何体面积与体积的计算、三视图);(6)直线与圆锥曲线;(7)概率与统计(理科中期望与方差及正态分布估计、统计案例);(8)几何证明及程序框图。要做到块块清楚,要在老师的引导下,对下列主要专题进行复习与训练,巩固并提高。
第一,函数与不等式是重点。在代数中,以函数为主干,不等式与函数的综合是热点。
(1)函数的性质,如单调性、奇偶性、周期性、对称性极值及最值等,多以具体函数及图象的几何直观展开,也适度考查抽象函数;注意在解答题中利用函数性质证明不等式的考查形式。
(2)一元二次函数,则是重中之重,函数值域(最值),以及转化为二次函数的值域,特别是含参变量的二次函数值域的研讨为重点;方法以突出配方法、换元法和基本不等式法为重点,二次函数零点的分布,二次不等式解的讨论,二次曲线交点问题等都与此相关。
(3)对于不等式证明,与函数联系的、与数列综合的是重点,在掌握比较法和基本不等式法的基础上,掌握几种简单的放和缩的技巧是必要的。
第二,数列,以等差、等比两种基本数列为载体考查数列的通项、求和、应用等为重点。应突出“基本量”的思想和转换与化归的方法,对于递推式给出的数列,可用“归纳--猜想--证明”的方法。
第三,三角函数的考查,狠抓基本公式的熟练运用:正用、逆用、变用及三角换元时用,注意与向量的结合及解三角形的实际应用。
第四,概率与统计,要重视与实际应用问题相结合;注意对几种统计案例的了解。
第五,立体几何应当“两条腿走路”:既能用传统的合情推理,也能用新增的向量法求解。
第六,解析几何以基本性质、基本运算为目标。要注重与函数、数列、三角、向量等内容的联系。
2、把握四大数学思想方法
明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。
数学家华罗庚先生说:数学是一个原则,无数内容,一种方法,到处可用。假如说我们从小学到中学学习12年数学的过程是由薄到厚的过程,那么复习的过程应该是深刻领会数学的内容、意义和方法,认真梳理、归纳、探究、总结、提炼,把握规律、灵活运用,把数学学习变得由厚变薄的过程。
有些学生在复习时不了解自己的优势和弱点,只是被动地跟着老师的安排,使得自己本来已经掌握的知识点和能力点不断重复,而自己的弱点却没有得到改进。其结果是一方面做着大量的无效劳动,另一方面自己的弱点却又难以得到改进,从而最终导致总成绩的徘徊不前;二是生理、心理疲劳。高三下学期的学习相当紧张,不少考生日以继夜、题海战术,无论生理上还是心理上都很疲劳。生理与心理疲劳积累到一定时候就会产生“高原现象”,感觉自己再怎么使劲也上不去了,越学越糊涂。明确了思想方法,这种情况就会得到有效的改善。
姚伟刚
